Assessment method: Final examination, midterm exam
Course content
Sequences, limits of sequences, properties.
Functions, elementary functions, limits of functions, properties.
Continuity. The maximum value theorem. The intermediate value theorem.
The derivative of a function, properties. Chain rule, inverse function rule. The theorems of Fermat and Rolle, the mean value theorem.
Higher derivatives. Graphing using first and second derivatives. L'Hôpital's rule.
Definite integrals, properties, examples.
Indefinite integrals, the fundamental theorem of calculus. Integration techniques.
Applications in computing areas, volumes, etc. Improper integrals.
Series, convergence, absolute convergence. Convergence tests. Power series, radius of convergence.
Taylor series.
Assessment method: Final examination, midterm exam
Course content
Introduction to sets, relations, equivalence relations, functions.
Introduction to mathematical logic and mathematical proofs.
The natural numbers. Mathematical induction. The arithmetic of natural numbers,
their ordering and well-ordering. The fundamental theorem of arithmetic.
Complex numbers, polar form, roots of unity, applications in trigonometry.
Finite sets and counting, introduction to combinatorics.
Introduction to cardinal numbers. Countable and uncountable sets. Cantor's diagonal argument.
Recommended Reading
I. Stewart and D. Tall. The Foundations of Mathematics. Oxford University Press, 2015.
Tony Gaddis. Starting out with Python. Pearson, 2015.
Ν. Αβούρης, Κ. Σγράμπας, Β. Πάλιουρας, Μ. Κούκιας. Εισαγωγή στους Υπολογιστές με τη γλώσσα Python Εκδότης Εταιρεία Αξιοποίησης και
Διαχείρισης Περιουσίας Πανεπιστημίου Πατρών, 2η έκδοση 2013. Κωδικός Βιβλίου στον Εύδοξο: 33154040.
Γεώργιος Μάνης. Εισαγωγή στον προγραμματισμό με αρωγό τη γλώσσα Python. Εκδότης Ελληνικά Ακαδημαϊκά Ηλεκτρονικά Συγγράμματα και
Βοηθήματα - Αποθετήριο "Κάλλιπος", 2016 (ηλεκτρονικό βιβλίο). Κωδικός Βιβλίου στον Εύδοξο: 320152
Κωνσταντίνος Μαγκούτης και Χρήστος Νικολάου. Εισαγωγή στον αντικειμενοστραφή προγραμματισμό με Python. Εκδότης Ελληνικά Ακαδημαϊκά Ηλεκτρονικά
Συγγράμματα και Βοηθήματα - Αποθετήριο "Κάλλιπος", 2016 (ηλεκτρονικό βιβλίο). Κωδικός Βιβλίου στον Εύδοξο: 320102.
Hans Peter Langtangen. Python Scripting for Computational Science. Εκδότης Heal-Link/Σύνδεσμος Ελληνικών Ακαδημαϊκών Βιβλιοθηκών, 2η έκδοση 2006
(ηλεκτρονικό βιβλίο). Κωδικός Βιβλίου στον Εύδοξο: 174838.
Magnus Lie Hetland. Beginning Python. Εκδότης Heal-Link/Σύνδεσμος Ελληνικών Ακαδημαϊκών Βιβλιοθηκών (ηλεκτρονικό βιβλίο).
Κωδικός Βιβλίου στον Εύδοξο: 170352.
MEM-105 Calculus II
Classification: Compulsory
Year/Semester: 1st/Spring
ECTS/Contact hours: 8/5
Lecture/Lab hours: 4/2
Prerequisites: MEM-101, MEM-102
Teaching method: Lectures, recitation sessions
Assessment method: Final examination, midterm exam
Tom Apostol. Multi-Variable Calculus and Linear Algebra with Applications to Differential Equations and Probability. Wiley, 1969.
Ν. Δανίκας και Μ.Γ. Μαριάς. Μαθήματα Διαφορικού Λογισμού πολλών μεταβλητών. Εκδόσεις Ζήτη, 2003.
Μ.Γ. Μαριάς και Ν. Μαντούβαλος. Μαθήματα Ολοκληρωτικού Λογισμού πολλών μεταβλητών. Εκδόσεις Ζήτη, 2002.
D. Hughes-Hallet, A.M. Gleason, W.G. McCallum. Calculus. John Wiley & Sons, Inc. 2012.
MEM-106 Linear Algebra I
Classification: Compulsory
Year/Semester: 1st/Spring
ECTS/Contact hours: 8/5
Lecture/Lab hours: 4/2
Prerequisites: MEM-102
Teaching method: Lectures, recitation sessions
Assessment method: Final examination, midterm exam
Course content
Vector spaces. Linear subspaces. Linear independence, basis, dimension. Sum of subspaces.
Linear transformations, kernel, image, isomorphisms.
Direct sums of vector spaces. Quotient spaces. Isomorphism theorems. Dual spaces.
The matrix of a linear transformation with respect to given ordered bases. Change of bases.
Invariant subspaces. Characteristic polynomials. Algebraic and geometric multiplicity of eigenvalues. The Caley-Hamilton theorem. Triangularizable matrices.
Norm and inner product. Gramm-Schmidt orthonormalization. Diagonalization of symmetric and hermitian matrices.
Recommended Reading
Δ. Βάρσος, Δ. Δεριζιώτης, Γ. Εμμανουήλ, Μ. Μαλιάκας, Α. Μελάς, Ο. Ταλέλλη. Μία εισαγωγή στη Γραμμική ‘Αλγεβρα. Εκδόσεις Σοφία, 2012.
Κωδικός Βιβλίου στον Εύδοξο: 22768417.
Gilbert Strang. Introduction to Linear Algebra. Wellesley Cambridge Press. 2016.
Gilbert Strang. Linear Algebra and Its Applications. Cengage Learning. 2006.
Algorithms and implementations in Python: Linear search, Binary search, Bisection method, selection sort, insertion sort, merge sort, "divide and conquer" algorithms.
Applications: Sorting of a list of names.
Obect-oriented programming: Introduction and applications for a class in Python, Objects, Class construction, Methods, Inheritance, Applications (fractions, figures, vectors, etc).
numpy module and applications: Calculations with vectors, matrices, Solutions of linear systems (Gauss elimination),
Plotting with Pylab in 2 and 3 dimensions, Histograms, Random numbers, graphs.
Recommended Reading
John V. Guttag. Introduction to computation and programming using Python. MIT Press, 2013.
Tony Gaddis. Starting out with Python. Pearson, 2015.
Κωνσταντίνος Μαγκούτης και Χρήστος Νικολάου. Εισαγωγή στον αντικειμενοστραφή προγραμματισμό με Python. Εκδότης Ελληνικά Ακαδημαϊκά Ηλεκτρονικά
Συγγράμματα και Βοηθήματα - Αποθετήριο "Κάλλιπος", 2016 (ηλεκτρονικό βιβλίο). Κωδικός Βιβλίου στον Εύδοξο: 320102.
Hans Peter Langtangen. Python Scripting for Computational Science. Εκδότης Heal-Link/Σύνδεσμος Ελληνικών Ακαδημαϊκών Βιβλιοθηκών, 2η έκδοση 2006
(ηλεκτρονικό βιβλίο). Κωδικός Βιβλίου στον Εύδοξο: 174838.
Magnus Lie Hetland. Beginning Python. Εκδότης Heal-Link/Σύνδεσμος Ελληνικών Ακαδημαϊκών Βιβλιοθηκών (ηλεκτρονικό βιβλίο).
Κωδικός Βιβλίου στον Εύδοξο: 170352.
MEM-108 Calculus III
Classification: Compulsory
Year/Semester: 2nd/Fall
ECTS/Contact hours: 8/5
Lecture/Lab hours: 4/2
Prerequisites: MEM-102, MEM-105
Teaching method: Lectures, recitation sessions
Assessment method: Final examination, midterm exam
Double and triple integrals. Improper double and triple integrals.
Plane and space curves.
Line integrals, surface integrals, the integral theorems of vector calculus.
Recommended Reading
J.E. Marsden and A.J. Tromba. Vector Calculus. W. H. Freeman. 2011.
W.E. Boyce and C. DiPrima. Elementary Differential Equations and Boundary Value Problems. Wiley, 2012.
MEM-211 Analysis I
Classification: Compulsory
Year/Semester: 2nd/Fall
ECTS/Contact hours: 7/5
Lecture/Lab hours: 4/2
Prerequisites: MEM-101
Teaching method: Lectures, recitation sessions
Assessment method: Final examination, midterm exam
Course content
Axiomatic foundation of the reals. The completeness axiom.
Sequences of real numbers. The definition of the limit. Elementary properties. Subsequences. Cauchy sequences. liminf, limsup.
Series of real numbers. Convergence tests. Absolute and conditional convergence. Rearrangements and products.
Functions of one variable. Accumulation points. Limits of a function. Continuous functions. The maximum value theorem.
The intermediate value theorem. Continuity of the inverse.
Derivatives. The mean value theorem. Chain rule, the inverse function theorem. Taylor's theorem. L’Hôpital's rule. Convex functions.
Recommended Reading
Walter Rudin. Principles of Mathematical Analysis. McGraw-Hill Education.
Assessment method: Final examination, computer lab assignments
Course content
Introduction (floating point arithmetic, rounding and truncation error).
Root-finding method (bisection method, fixed point theorems, fixed point iteration/general iteration method, Newton method and secant method).
Systems of (linear) equations (Gauss elimination for linear systems, partial pivoting, vector and matrix norms, mode indicator, of linear system, introduction to stability of linear systems, introduction to iterative methods).
Interpolation and approximation (Lagrange polynomials, Newton representations of Lagrange polynomial, Hermite interpolation, linear and cubic polynomials/interpolation of continuous functions and piecewise linear and cubic polynomials).
Lab projects, implementation and analysis of the algorithms and programming languages.
Recommended Reading
Γ.Δ. Ακρίβης και Β. Δουγαλής. Εισαγωγή στην Αριθμητική Ανάλυση. Πανεπιστημιακές Εκδόσεις Κρήτης, 1997.
G.E. Forsythe, M.A. Malcolm, C.B. Moler. Computer Methods for Mathematical Computations.
Prentice Hall, Inc., 1977.
MEM-109 Physics I
Classification: Compulsory
Year/Semester: 2nd/Fall
ECTS/Contact hours: 7/5
Lecture/Lab hours: 4/2
Prerequisites: MEM-101
Teaching method: Lectures, recitation sessions
Assessment method: Final examination, midterm exam
Course content
Introduction to Mechanics. Motion in one dimension. Motion in two dimensions: Circular motion.
Newton's laws of motion. Simple forms of forces in one dimension.
Kinetic energy and work. Conservative forces. Potential energy.
Motion in two and three dimensions. Central forces. Law of universal gravitation.
Dynamics of a system of particles. Linear momentum. Collisions.
Angular momentum and torque.
Rotation of a rigid body. Rolling motion.
Angular momentum. Energy of a system of particles.
Oscillations. Resonance.
Waves. Transverse waves in a string.
Superposition principle. Standing waves.
Sound waves.
Recommended Reading
R.A. Serway, J.W. Jewett. Physics for Scientists and Engineers, Volume 1. Engage Learning. 2013.
D. Halliday, R. Resnick, J. Walker. Fundamentals of Physics, Volume 1. Wiley.
H.D. Young and R.A. Freedman. University Physics with Modern Physics. Addison-Wesley, 2011.
MEM-212 Analysis II
Classification: Compulsory
Year/Semester: 2nd/Spring
ECTS/Contact hours: 8/5
Lecture/Lab hours: 4/2
Prerequisites: MEM-211
Teaching method: Lectures, recitation sessions
Assessment method: Final examination, midterm exam
Course content
Uniform continuity. Uniformly continuous functions on intervals.
The Riemann integral. The definition of Darboux. The criterion of Riemann. Basic properties.
Integrability of continuous and monotone functions.
Sequences of functions. Pointwise and uniform convergence. Examples. The Weierstrass approximation theorem.
Series of functions. The Weierstrass criterion. Power series. Radius of convergence. Abel's theorem.
Metric spaces. Euclidean spaces, spaces of continuous functions. Open and closed sets. Limit of a sequence.
Limit and continuity of a function. Completeness. Compactness.
Recommended Reading
Walter Rudin. Principles of Mathematical Analysis. McGraw-Hill Education.
Assessment method: Final examination, midterm exam
Course content
Integral domains, irreducible elements, relatively prime elements.
The ring of polynomials with coefficients in a field, unique factorization. Gauss's lemma, Eisenstein's criterion.
Ideals, prime ideals, maximal ideals. Quotient rings, the isomorphism theorem.
Finite fields.
Permutation groups, cycles. The sign of a permutation. The alternating group. Cayley's theorem.
Direct products of groups.
Group homomorphisms and their kernels, normal subgroups. Quotient groups, the isomorphism theorem.
Transformation groups.
Recommended Reading
John B. Fraleigh. A First Course in Abstract Algebra. Pearson. 2002.
Vectors in the plane and in space, circles, spheres, ellipses, hyperbolas, parabolas, conic sections,
surfaces in space, geometric inversion in the plane.
Selections from books 1-6 and 11-13 of Euclid's Elements,
with some newer results, and a brief overview of the attempts to prove the Parallel Postulate.
Recommended Reading
Α. Πούλος και Γ. Θωμαΐδης. Διδακτική της Ευκλείδιας Γεωμετρίας. Εκδόσεις Ζήτη, 2006.
E. Δημητριάδης. Στατιστική επιχειρήσεων με εφαρμογές σε SPSS και LISREL. Εκδόσεις Κριτική, 2012.
MEM-XXX History of Mathematics
Classification: Elective
Year/Semester: 3rd/Spring
ECTS/Contact hours: 6/3
Lecture/Lab hours: 3/0
Prerequisites: None
Teaching method: Lectures
Assessment method: Final examination
Course content
Egyptian and Babylonian mathematics. Greek mathematics. Thales, Pythagoras,
the famous problems of classical greek mathematics.
Euclid's Elements, after Euclid (Apollonius, Archimedes, ...).
Brief overview of the history of mathematics after the hellenistic period.
The revival of greek mathematics in the first centuries after Christ. Diophantus, Ptolemy, Pappus, Proclus.
Brief overview of mathematics in China and India. Arabic mathematics and western middle ages.
Renaissance mathematics, Cardano, Tartaglia and Ferrari. The beginnings of modern mathematics: Vieta, Napier,
Briggs, Galileo, Kepler, Cavalieri. The era of Fermat και Descartes.
Various topics, depending on the instructor, on the forerunners of calculus,
Newton and Leibnitz, the mathematicians of the eras of
Bernoulli and Euler, Lagrange, Gauss, Cauchy, etc.
Recommended Reading
H.N.L. Bunt, J.S. Phillip, D.J. Bedient. Οι ιστορικές ρίζες των στοιχειωδών Μαθηματικών. Εκδόσεις Πνευματικός.
B.L. van Der Waerden. Η αφύπνιση της επιστήμης. Πανεπιστημιακές Εκδόσεις Κρήτης, 2000.
V. J. Katz. Ιστορία των Μαθηματικών. Πανεπιστημιακές Εκδόσεις Κρήτης, 2013.
Γ. Χριστιανίδης, Δ. Διαλέτης. Διαμάχες για την Ιστορία των Αρχαίων Ελληνικών Μαθηματικών. Πανεπιστημιακές Εκδόσεις Κρήτης, 2006.
MEM-213 Complex Analysis
Classification: Elective
Year/Semester: 3rd/Fall
ECTS/Contact hours: 8/4
Lecture/Lab hours: 4/0
Prerequisites: None
Teaching method: Lectures
Assessment method: Final examination, midterm exam
Course content
Topology of the complex plane.
Analytic functions, line integrals, and power series.
Cauchy's integral theorem and applications.
Recommended Reading
James W. Brown and Ruel V. Churchill. Complex variables and Applications. 9th ed., McGraw-Hill, 2013.
Stephen D. Fisher. Complex Variables. 2nѕ ed., Dover Publications, 1999.
Joseph Bak and Donald Newman. Complex Analysis. Springer, 2010.
Σάββας Τερσένοβ. Αναλυτικές συναρτήσεις και μερικές εφαρμογές τους. Δίαυλος Α.Ε., 1998.
MEM-217 Harmonic Analysis
Classification: Elective
Year/Semester: 4th/Fall
ECTS/Contact hours: 8/5
Lecture/Lab hours: 4/2
Prerequisites: MEM-211, MEM-212
Teaching method: Lectures, recitation sessions
Assessment method: Final examination, midterm exam
Course content
Fourier series, convergence theorems.
Recommended Reading
E. Stein and R. Shakarchi. Fourier Analysis, an introduction. Princeton University Press, 2003.
T. Korner. Fourier Analysis. Cambridge University Press, 1988.
George F. Simmons. Introduction to Topology and Modern Analysis. Krieger Publishing Company, 2003.
MEM-216 Analysis of several variables
Classification: Elective
Year/Semester: 4th/Spring
ECTS/Contact hours: 8/4
Lecture/Lab hours: 4/0
Prerequisites: MEM-211, MEM-212, MEM-108
Teaching method: Lectures
Assessment method: Final examination
Course content
Differentiability of a function of several variables.
The inverse and implicit function theorems.
Higher derivatives.
Change of variables in multiple integrals.
Differential forms.
Stokes' theorem.
Recommended Reading
Michael Spivak. Calculus On Manifolds. Westview Press, 1971.
MEM-223 Linear Algebra II
Classification: Elective
Year/Semester: 3rd/Fall
ECTS/Contact hours: 8/4
Lecture/Lab hours: 4/0
Prerequisites: MEM-102, MEM-106
Teaching method: Lectures
Assessment method: Final examination
Course content
Vector spaces. Subspaces. Linear independence, basis, dimension. Sum of subspaces.
Linear maps, Subspaces related to a linear map. Composition. Isomorphisms.
Direct sum of vector spaces. Quotient space. Isomorphism theorems. Dual spaces.
Matrix of a linear map in a basis. Change of basis.
Invariant subspaces. Characteristic polynomial of a matrix. Algebraic and geometrical multiplicity of eigenvalues. Caley-Hamilton theorem. triangularisation of a matrix.
Norm and scalar product. Gramm-Schmidt orthonormalisation. Diagonalisation of symmetric and of hermitian matrices.
Recommended Reading
Gilbert Strang. Linear Algebra and Its Applications. Cengage Learning. 2006.
Μπρανισλάβ Μπόριτσιτς. Λογική και Απόδειξη. Εκδόσεις Ζήτη, 1995.
Αθανάσιος Τζουβάρας. Στοιχεία Μαθηματικής Λογικής. Εκδόσεις Ζήτη, 1998.
Herbert B. Enderton. A Mathematical Introduction to Logic. Academic Press, 2001.
MEM-244 Applied Algebra
Classification: Elective
Year/Semester: 4th/Eaρινό
ECTS/Contact hours: 8/4
Lecture/Lab hours: 4/0
Prerequisites: MEM-221
Teaching method: Lectures
Assessment method: Final examination
Course content
Euclidean domains.
Unique factorization domains.
Construction of fields via euclidean domains.
Finite fields.
Cyclotomic fields. Factorization of polynomials with coefficients in a finite field.
Elements of coding theory.
Recommended Reading
MEM-245 Introduction to cryptography
Classification: Elective
Year/Semester: 4th/Fall
ECTS/Contact hours: 8/4
Lecture/Lab hours: 4/0
Prerequisites: MEM-221
Teaching method: Lectures
Assessment method: Final examination
Course content
Classical cryptography. Study of the following cryptosystems: transposition, substitution, affine, Vigenère, Hill,
permutation, stream ciphers. Cryptoanalysis of all the above cryptosystems.
RSA and factorization, public-key cryptography. The RSA cryptosystem. Encryption, "attack",
cryptoanalysis, factorization algorithm.
Other public-key cryptosystems: ElGamal and discrete logarithm,
finite field, elliptic curve, knapsack.
Signatures.
Recommended Reading
Δ.Μ. Πουλάκης. Κρυπτογραφία: Η επιστήμη της ασφαλούς επικοινωνίας. Εκδόσεις Ζήτη, Θεσσαλονίκη 2004.
MEM-252 Numerical Solution of Ordinary Differential Equations
Classification: Elective
Year/Semester: 3rd/Spring
ECTS/Contact hours: 8/4
Lecture/Lab hours: 4/2
Prerequisites: MEM-101, MEM-102, MEM-107, MEM-108
Teaching method: Lectures, computer labs
Assessment method: Final examination, computer lab assignments
Course content
Numerical methods for the initial value problem for ordinary differential equations. Euler’s methods, Runge-Kutta, multistep methods.
Consistency, stability and convergence. Error analysis and estimation.
Applications in Physics and Biology.
Finite difference and element methods for the two-point boundary value problem.
MEM-253 Numerical Solution of Partial Differential Equations
Classification: Elective
Year/Semester: 4th/Fall
ECTS/Contact hours: 8/4
Lecture/Lab hours: 4/2
Prerequisites: MEM-101, MEM-102, MEM-107, MEM-108
Teaching method: Lectures, computer labs
Assessment method: Final examination, computer lab assignments
Course content
Finite difference and element methods in piecewise linear polynomial approximation for the two-point boundary value problem with various boundary conditions.
Finite difference methods for the Poisson equation.
Finite difference and element methods/method for initial and boundary value problems for evolutionary partial differential equations (heat equation, wave equation, first order hyperbolic type, Schrodinger equation).
Lab projects, implementation and analysis of the algorithms and programming languages.
Recommended Reading
C. Pozrikidis. Numerical Computation in Science and Engineering. Oxford University Press, 2008.
Γ.Δ. Ακρίβης και Β. Δουγαλής. Αριθμητικές Μέθοδοι για Συνήθεις Διαφορικές Εξισώσεις. Πανεπιστημιακές Εκδόσεις Κρήτης, 2006.
Στέφανος Τραχανάς. Μερικές Διαφορικές Εξισώσεις. Πανεπιστημιακές Εκδόσεις Κρήτης, 2001.
Γ. Ακρίβης και Ν. Αλικάκος. Μερικές Διαφορικές Εξισώσεις. Σύγχρονη Εκδοτική, Αθήνα 2012
Assessment method: Final examination, computer lab assignments
Course content
Vector and matrix norms
Sensitivity of linear systems. Matrix condition number and analysis of linear systems in the presence of disturbances/ analysis of linear systems in the presence of actuator saturation and L2-disturbances/theorem of disturbance of linear system.
LU decomposition. Round-off (error) analysis of Gaussian estimation.
Cholesky decomposition. Linear systems with positive fixed matrix, area and sparse matrices/efficient approximate solution of sparse linear systems/an introduction to sparse matrices.
Iterative methods: Jacobi, Gauss-Seidel, conjugate gradient method, preconditioning techniques (for large linear systems).
Linear least squares problems. Rectangular matrices. QR decomposition. Householder transformation,. Singular value decomposition (SVD).
The eigenvalue-eigenvector problem.
Lab projects, implementation and analysis of the algorithms and programming languages.
Recommended Reading
Γ.Δ. Ακρίβης και Β. Δουγαλής. Αριθμητικές Μέθοδοι για Συνήθεις Διαφορικές Εξισώσεις. Πανεπιστημιακές Εκδόσεις Κρήτης, 2006.
Estimator: Parametric spaces, methods of moments, maximum likelihood estimation, least squares estimation, Bayes’ estimators and minimum-variance unbiased estimator. Cramer-Frechet-Rao inequality, efficient estimators, asymptotic behavior of estimators, confidence intervals.
Statistical hypothesis testing: parametric assumptions, Neyman-Pearson theory, likelihood-ratio test and asymptotic behavior, asymptotic theory of testing statistical hypothesis, testing of normality, linear regression model.
Lab projects, implementation of methods using statistical software.
Recommended Reading
Γεώργιος Γ. Ρούσσας, Γεώργιος Σταματέλος. Στατιστική συμπερασματολογία, τόμος Ι. 2η έκδοση. Εκδόσεις Ζήτη, 1994.
Γεώργιος Γ. Ρούσσας, Γεώργιος Σταματέλος. Στατιστική συμπερασματολογία, τόμος ΙI. Εκδόσεις Ζήτη, 1992.
Χ. Δαμιανού, Μ. Κούτρας. Εισαγωγή στη Στατιστική, Μέρος Ι. Εκδόσεις Σ. Αθανασόπουλος & ΣΙΑ Ο.Ε., 1998.
MEM-263 Stochastic Processes
Classification: Elective
Year/Semester: 4th/Fall
ECTS/Contact hours: 8/4
Lecture/Lab hours: 4/0
Prerequisites: MEM-101, MEM-261
Teaching method: Lectures
Assessment method: Final examination
Course content
Definition of a discrete time stochastic process and its distribution.
Markov chains.
Transition probabilities.
Class structure.
Recurrence and transience.
Ergodic theorem random walks.
Invariant distributions and convergence to equilibrium.
Markov chains of continuous time. Poisson distribution.
First order differential equations. Existence and uniqueness of the solution of the initial value problem.
Local and global existence, a priori estimates. Continuous dependence of a solution on the data. Differentiability of solutions.
Systems of differential equations. Existence and uniqueness of solutions.
Reduction of a system of equations to a single high order equation and vice versa.
Systems of linear differential equations. Wronskian determinant. General solution. Systems with constant coefficients. Nonhomogeneous systems.
Boundary-value problems. Existence and uniqueness of the solution. Green's function.
Theory of stability. Elementary types of rest points.
Lyapunov's theorems on stability and asymptotic stability. Test for stability based on first approximation.
Introduction in the foundation and in the equations of mathematical models in areas of classical mathematical physics with applications from the theory of diffusion, the mechanics of continuous media (fluid mechanics, linear theory of elasticity), optics, electromagnetism, etc.
Recommended Reading
MEM-284 Wave Propagation
Classification: Elective
Year/Semester: 4th/Fall
ECTS/Contact hours: 8/4
Lecture/Lab hours: 4/0
Prerequisites: MEM-101, MEM-105, MEM-108, MEM-271
Teaching method: Lectures
Assessment method: Final examination
Course content
Waves and 1st order PDEs.
Hyperbolic systems, and the nonlinear wave equation.
Wave equation in two and three dimensions.
Propagation in layered and non-homogeneous media.
geometric optics.
Dispersive linear waves.
Asymptotic behaviour, group velocity and amplitude equations.
Energy propagation.
Multi-scale problems and homogenisation.
WKB method and paraxial approximation.
Recommended Reading
MEM-287 Mathematical Theory of Materials
Classification: Elective
Year/Semester: 4th/Fall
ECTS/Contact hours: 8/4
Lecture/Lab hours: 4/0
Prerequisites: MEM-271
Teaching method: Lectures
Assessment method: Final examination
Course content
Elements of tensor algebra.
Elements of vector and tensor calculus.
Geometrical analysis of deformations.
Motions. Material and spatial descriptions.
Axioms of mass conservation, linear and angular momentum balance.
Cauchy's stress tensor.
Material form of balance laws.
Power theorem.
Examples of constitutive laws.
Recommended Reading
MEM-289 Mathematical Biology
Classification: Elective
Year/Semester: 4th/Fall
ECTS/Contact hours: 8/4
Lecture/Lab hours: 4/2
Prerequisites: MEM-271
Teaching method: Lectures, laboratory classes
Assessment method: Final examination
Course content
Continuous and discrete population models for a single species.
Continuous and discrete models for interacting populations.
Evolution and diffusion of biological systems.
Modeling and Simulations of biomolecular systems.
Biological waves.
Dynamics and models for diseases.
Pattern formation in biology.
Modeling the dynamics of marital interaction.
Recommended Reading
J.D. Murray. Mathematical Biology, I. An Introduction. Springer, 1993.